74 research outputs found

    A Precessing Ferromagnetic Needle Magnetometer

    Full text link
    A ferromagnetic needle is predicted to precess about the magnetic field axis at a Larmor frequency Ω\Omega under conditions where its intrinsic spin dominates over its rotational angular momentum, NIΩN\hbar \gg I\Omega (II is the moment of inertia of the needle about the precession axis and NN is the number of polarized spins in the needle). In this regime the needle behaves as a gyroscope with spin NN\hbar maintained along the easy axis of the needle by the crystalline and shape anisotropy. A precessing ferromagnetic needle is a correlated system of NN spins which can be used to measure magnetic fields for long times. In principle, by taking advantage of rapid averaging of quantum uncertainty, the sensitivity of a precessing needle magnetometer can far surpass that of magnetometers based on spin precession of atoms in the gas phase. Under conditions where noise from coupling to the environment is subdominant, the scaling with measurement time tt of the quantum- and detection-limited magnetometric sensitivity is t3/2t^{-3/2}. The phenomenon of ferromagnetic needle precession may be of particular interest for precision measurements testing fundamental physics.Comment: Main text: 6 pages, 2 figures; Supplementary material: 3 pages, 1 figur

    Relaxation of atomic polarization in paraffin-coated cesium vapor cells

    Get PDF
    The relaxation of atomic polarization in buffer-gas-free, paraffin-coated cesium vapor cells is studied using a variation on Franzen's technique of ``relaxation in the dark'' [Franzen, Phys. Rev. {\bf 115}, 850 (1959)]. In the present experiment, narrow-band, circularly polarized pump light, resonant with the Cs D2 transition, orients atoms along a longitudinal magnetic field, and time-dependent optical rotation of linearly polarized probe light is measured to determine the relaxation rates of the atomic orientation of a particular hyperfine level. The change in relaxation rates during light-induced atomic desorption (LIAD) is studied. No significant change in the spin relaxation rate during LIAD is found beyond that expected from the faster rate of spin-exchange collisions due to the increase in Cs density.Comment: 14 pages, 14 figure

    Quantum sensor networks as exotic field telescopes for multi-messenger astronomy

    Full text link
    Multi-messenger astronomy, the coordinated observation of different classes of signals originating from the same astrophysical event, provides a wealth of information about astrophysical processes with far-reaching implications. So far, the focus of multi-messenger astronomy has been the search for conventional signals from known fundamental forces and standard model particles, like gravitational waves (GW). In addition to these known effects, quantum sensor networks could be used to search for astrophysical signals predicted by beyond-standard-model (BSM) theories. Exotic bosonic fields are ubiquitous features of BSM theories and appear while seeking to understand the nature of dark matter and dark energy and solve the hierarchy and strong CP problems. We consider the case where high-energy astrophysical events could produce intense bursts of exotic low-mass fields (ELFs). We propose to expand the toolbox of multi-messenger astronomy to include networks of precision quantum sensors that by design are shielded from or insensitive to conventional standard-model physics signals. We estimate ELF signal amplitudes, delays, rates, and distances of GW sources to which global networks of atomic magnetometers and atomic clocks could be sensitive. We find that, indeed, such precision quantum sensor networks can function as ELF telescopes to detect signals from sources generating ELF bursts of sufficient intensity. Thus ELFs, if they exist, could act as additional messengers for astrophysical events.Comment: 19 pages, 5 figure

    A network of precision gravimeters as a detector of matter with feeble nongravitational coupling

    Full text link
    Hidden matter that interacts only gravitationally would oscillate at characteristic frequencies when trapped inside of Earth. For small oscillations near the center of the Earth, these frequencies are around 300 μ\muHz. Additionally, signatures at higher harmonics would appear because of the non-uniformity of Earth's density. In this work, we use data from a global network of gravimeters of the International Geodynamics and Earth Tide Service (IGETS) to look for these hypothetical trapped objects. We find no evidence for such objects with masses on the order of 1014^{14} kg or greater with an oscillation amplitude of 0.1 rer_e. It may be possible to improve the sensitivity of the search by several orders of magnitude via better understanding of the terrestrial noise sources and more advanced data analysis

    Universal determination of comagnetometer response to spin couplings

    Full text link
    We propose and demonstrate a general method to calibrate the frequency-dependent response of self-compensating noble-gas-alkali-metal comagnetometers to arbitrary spin perturbations. This includes magnetic and nonmagnetic perturbations like rotations and exotic spin interactions. The method is based on a fit of the magnetic field response to an analytical model. The frequency-dependent response of the comagnetometer to arbitrary spin perturbations can be inferred using the fit parameters. We demonstrate the effectiveness of this method by comparing the inferred rotation response to an experimental measurement of the rotation response. Our results show that experiments relying on zero-frequency calibration of the comagnetometer response can over- or under-estimate the comagnetometer sensitivity by orders of magnitude over a wide frequency range. Moreover, this discrepancy accumulates over time as operational parameters tend to drift during comagnetometer operation. The demonstrated calibration protocol enables accurate prediction and control of comagnetometer sensitivity to, for example, ultralight bosonic dark-matter fields coupling to electron or nuclear spins as well as accurate monitoring and control of the relevant system parameters
    corecore